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Abstract
We give new Bäcklund transformations (BTs) for some known integrable (in the
sense of being multidimensionally consistent) quadrilateral lattice equations.
As opposed to the natural auto-BT inherent in every such equation, these
BTs are of two other kinds. Specifically, it is found that some equations
admit additional auto-BTs (with Bäcklund parameter), whilst some pairs of
apparently distinct equations admit a BT which connects them.

PACS number: 02.30.Ik

1. Introduction

Multidimensional consistency [1, 2] is the essence of integrability found in examples of
lattice equations which arise as the superposition principle (aka the permutability condition)
for Bäcklund transformations (BTs). This property is deep enough to capture fully the
integrability of a system, but manageable enough to be successfully employed in attempts to
construct and classify integrable lattice equations [3–6].

In the present paper, relationships between known examples of multidimensionally
consistent equations are established. These relationships are similar in spirit to the notion of
multidimensional consistency. However, rather than an equation being consistent with copies
of itself, distinct equations are consistent with each other. This consistency is equivalent to
the existence of a particular kind of BT, and it is this latter point of view we adopt because it
lends more in the way of intuition to the systems discussed.

The sense in which we use the term BT throughout this paper, is for an overdetermined
system in two variables which constitutes a transformation between solutions of the two
equations that emerge as the compatibility constraints. The term auto-BT will be used to
describe the case where the emerging equations coincide. We refer to a free parameter of an
auto-BT as a Bäcklund parameter if transformations with different values of the parameter
commute (in the sense that a superposition principle exists—examples will be given).
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2. The degenerate cases of Adler’s equation

A scalar multidimensionally consistent lattice equation of particular significance was found
by Adler [7] as the superposition principle for BTs of the Krichever–Novikov equation [8, 9].
We write Adler’s equation in the following way:

p(ũu + û̃̂u) − q(ûu + ũ̃̂u) = Qp − Pq

1 − p2q2
(û̃u + ũ̂u − pq(1 + ũûũ̂u)). (1)

Here u = u(n,m), ũ = u(n + 1,m), û = u(n,m + 1) and ̂̃u = u(n + 1,m + 1) denote values
of the dependent variable u as a function of the independent variables n,m ∈ Z. The lattice
parameters (p, P ) and (q,Q) are points on an elliptic curve, (p, P ), (q,Q) ∈ �,

� = {(x,X) : X2 = x4 + 1 − (k + 1/k)x2}
where k is an arbitrary constant (the Jacobi elliptic modulus). The lattice parameters can be
viewed as having their origin in Bäcklund parameters associated with commuting BTs of the
Krichever–Novikov equation, they play a central role in the integrability of (1). Equation (1),
the Jacobi form of Adler’s equation, was first given by Hietarinta [6], it is equivalent (by a
change of variables) to the Weierstrass form given originally by Adler [7], cf [10].

Adler’s equation was included in the list of multidimensionally consistent equations
given later by Adler, Bobenko and Suris (ABS) in [3] (where it was denoted by Q4). Here we
reproduce the remaining equations in that list:

Q3δ:

(
p − 1

p

)
(ũu + û̃̂u) −

(
q − 1

q

)
(ûu + ũ̃̂u)

=
(

p

q
− q

p

)(
ũ̂u + û̃u +

δ2

4

(
p − 1

p

) (
q − 1

q

))
,

Q2 : p(u − û)(̃u − ̂̃u) − q(u − ũ)(̂u − ̂̃u)

= pq(q − p)(u + ũ + û + ̂̃u − p2 + pq − q2),

Q1δ: p(u − û)(̃u − ̂̃u) − q(u − ũ)(̂u − ̂̃u) = δ2pq(q − p),

A2 :

(
p − 1

p

)
(ûu + ũ̃̂u) −

(
q − 1

q

)
(ũu + û̃̂u) =

(
p

q
− q

p

)
(1 + ũûû̃u),

A1δ: p(u + û)(̃u + ̂̃u) − q(u + ũ)(̂u + ̂̃u) = δ2pq(p − q),

H3δ: p(ũu + û̃̂u) − q(ûu + ũ̃̂u) = δ(q2 − p2),

H2 : (u − ̂̃u)(̃u − û) = (p − q)(u + ũ + û + ̂̃u + p + q),

H1 : (u − ̂̃u)(̃u − û) = (p − q),

(2)

where it appears, δ is a constant parameter of the equation. The equations in the list (2) are all
degenerate sub-cases of equation (1). Table 1 contains the details of these degenerations. To
clarify the meaning of the entries in this table we include an example here. Let us make the
substitutions

u → εu, p → εp, q → εq

in (1) and consider the leading term in the small-ε expansion of the resulting expression. For
this calculation it is necessary to write the parameters P and Q as a series in ε,

P = ± (
1 − ε2 1

2 (k + 1/k)p2 + · · ·) , Q = ± (
1 − ε2 1

2 (k + 1/k)q2 + · · ·) ,

so there is some choice of sign. The rest of the calculation is straightforward and the leading
order expression that results is exactly the equation Q11 or A11 depending on this choice
of sign.
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Table 1. Substitutions which lead to the indicated degenerate sub case (Eq) of Adler’s equation
(1) in the limit ε → 0. Choose δ = ε rather than 0 to arrive at Eq with δ = 0.

Eq u k p P

Q3δ 2iε
δ

u −4ε2 ε(p − 1/p) 1
2 (p + 1/p) + O(ε4)

Q2 1
ε

+ ε
2 u ε2 ε2p 1 − ε2

2 p2 − ε4

8 p4 + O(ε6)

Q1δ ε
δ
u k εp 1 + O(ε2)

A2 u −4ε2 1
ε
(p − 1/p)−1 −1

2ε2 (p + 1/p)(p − 1/p)−2 + O(ε2)

A1δ ε
δ
u k εp −1 + O(ε2)

H3δ 1 + ε√−δ
u 1 1 − ε2

2 p −ε2p + O(ε4)

H2 1
ε

+ ε − ε
2 u −4ε4 1 − ε2

2 p −1
2ε2 + 1

4 p − 2ε2 + ε4p − ε6p + O(ε10)

H1 1 + εu k 1 − ε2

2 p k−1√−k
− ε2 k−1

2
√−k

p + O(ε4)

It was pointed out in [3] that one can descend through the lists ‘Q’, ‘A’ and ‘H’ in (2) by
degeneration from Q4, A2 and H3δ respectively. The degenerations from Adler’s equation in
Weierstrass form to the equations in the ‘Q’ list are given explicitly in [11].

Part of what gives (1) its particular significance is that, as far as we are aware, all known
scalar multidimensionally consistent lattice equations are either linearizable or transformable
to (1) or one of its degenerate sub cases (2) (possibly by a non-autonomous, or gauge,
transformation). Note, this apparent ubiquity of Adler’s equation is partially explained by the
main result in [4].

3. Alternative auto-Bäcklund transformations

Table 2 lists auto-BTs for some particular equations from the list (2). The BTs listed are distinct
from the natural auto-BT associated with every multidimensionally consistent equation (for
example, this is described for Adler’s equation in [10]), one significant difference is that the
superposition principle associated with these alternative auto-BTs coincides with some other
equation present in the list (2).

To explain the implementation of the BTs in table 2 we give an example here (the last
entry in the table). Consider the following system of equations in the two variables u(n,m)

and v(n,m),

(u − ũ)(v − ṽ) = −p(u + ũ + v + ṽ + p + 2r),

(u − û)(v − v̂) = −q(u + û + v + v̂ + q + 2r)
(3)

(the second equation here is implicit from the first and so is omitted from the table for brevity).
With u fixed throughout the lattice (i.e., for all n,m), (3) constitutes an overdetermined system
for v. This is resolved (̃̂v = ̂̃v) if u is chosen to satisfy the equation Q11 throughout the
lattice, moreover, v which then emerges in the solution of (3) also satisfies Q11. We say that
the solutions u and v of Q11 are related by the BT (3) and for convenience write

u
r∼ v. (4)

Here r is the parameter present in (3), this is a free parameter of the transformation. The
relation (4) is symmetric because (3) is invariant under the interchange u ↔ v.

3
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Table 2. Each equation, Eq, admits the given auto-BT with Bäcklund parameter r. The equation
SP emerges as the superposition principle for solutions of Eq related by this BT. It turns out that
the converse associations also hold (see main text).

Eq Bäcklund transformation SP

Q30 (pr − 1
pr )(uv + ũ̃v) − (r − 1

r )(ũv + ũv) = (p − 1
p )(1 + ũuvṽ) A2

Q1δ p(u + v)(̃u + ṽ) − r(u − ũ)(v − ṽ) = δ2pr(p + r) A1δ

Q30 p(ũv + ũv) − uv − ũ̃v = r(1 − p2) H31

Q11 (u − ũ)(v − ṽ) = −p(u + ũ + v + ṽ + p + 2r) H2

Transformations (3) with different choices of the parameter r commute in the sense that a
superposition principle exists. That is, given a solution u(n,m) of Q11, suppose we compute
other solutions u(n,m), u̇(n,m), u̇(n,m) and u̇(n,m) for which

u
r∼ u, u

s∼ u̇,

u
s∼ u̇, u̇

r∼ u̇.
(5)

Then the solutions u̇ and u̇ coincide throughout the lattice provided they coincide at a single
point where the equation

(u − u̇)(u − u̇) = (r − s)(u + u + u̇ + u̇ + r + s) (6)

also holds (and in the computation of these new solutions we can always choose the integration
constants to make this so). Furthermore, the relation (6) then continues to hold throughout the
lattice. In this sense we regard (6) as the superposition principle for solutions of Q11 related
by the BT (3), up to a change in notation (6) coincides with the lattice equation H2 from the
list (2).

To conclude our description of the BT (3) we recognize that the preceding facts are also
true in the converse sense. Observe first that the system (5) implies (amongst others) the
following equations:

(u − ũ)(u − ũ) = −p(u + ũ + u + ũ + p + 2r),

(u − ũ)(u̇ − ˙̃u) = −p(u + ũ + u̇ + ˙̃u + p + 2s).
(7)

Now consider (6) as a lattice equation, so that u = u(l, k), u = u(l + 1, k), u̇ = u(l, k + 1) and
u̇ = u(l+1, k+1) for new independent variables l, k ∈ Z. Then the system (7) forms a BT, with
Bäcklund parameter p, between solutions u(l, k) and ũ(l, k) of equation (6) (i.e., constitutes an
auto-BT for H2). This BT commutes with its counterpart with Bäcklund parameter q (which
relates solutions u(l, k) and û(l, k) of (6)), the superposition principle in this case is exactly
the equation Q11.

As described for this example, all the BTs given in table 2 establish a kind of duality
between a particular pair of equations, specifically, each equation emerges as the superposition
principle for BTs that relate solutions of the other. This can be compared to the natural auto-BT
of a multidimensionally consistent equation, for which the superposition principle coincides
with the equation itself.
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Table 3. BTs between distinct lattice equations. The BT between Q10 and Q1δ was given
originally by ABS in [4]. † indicates application of the point transformation p → p2, q → q2 to
the lattice parameters. Transformations are stated up to composition with point symmetries of the
equations in u and v.

Eq in u Bäcklund transformation Eq in v

Q30 uv + ũ̃v − p(ũv + ũv) = (p − 1
p )(ũu + δ2

4 p) Q3δ

Q11 (u − ũ)(v − ṽ) = p(2ũu − v − ṽ) + p2(u + ũ + p) Q2
Q10 (u − ũ)(v − ṽ) = p(ũu − δ2) Q1δ

H30 pũu − uv − ũ̃v = δ H3δ

H1 2ũu = v + ṽ + p H2
A10 (u + ũ)(v + ṽ) = p(ũu + δ2) A1δ

A10 (u + ũ)(v − ṽ) = p(u − ũ) Q11

†A1δ u + ũ = 2pvṽ + δp2 H3δ

†A10 (u + ũ)vṽ = p(1 − δ
2 u)(1 − δ

2 ũ) H3δ

4. Bäcklund transformations between distinct equations

Table 3 lists BTs that connect particular pairs of equations from the list (2). To be precise
about the meaning of the entries in this table we again give an example. Consider the system
of equations

2ũu = v + ṽ + p,

2ûu = v + v̂ + q.
(8)

This system is compatible in v if the variable u satisfies the equation H1. Given such u, it
can be verified that v which emerges in the solution of (8) then satisfies the equation H2.
Conversely, if v satisfies H2 then solving (8) yields u which satisfies H1. In this way the
system (8) constitutes a BT between the equations H1 and H2, which corresponds to the fifth
entry in table 3 (where we give only one equation from the pair (8), the other being implicit).

The BT (8) can be explained as a non-symmetric degeneration of the natural auto-BT for
the equation H2. The natural auto-BT for H2 is defined by the system

(u − ṽ)(̃u − v) = (p − r)(u + ũ + v + ṽ + p + r),

(u − v̂)(̂u − v) = (q − r)(u + û + v + v̂ + q + r)
(9)

(r is the Bäcklund parameter). Now, the substitution u → 1
ε2 + 2

ε
u in equation H2 leads to the

equation H1 in the limit ε −→ 0. This substitution in system (9) together with the particular
choice r = − 1

ε2 yields system (8) in the limit ε −→ 0. Note that it is not a priori obvious that
the BT will be preserved in this limit, by which we mean that once the system (8) has been
found, it remains to verify the result.

Each of the first six entries in table 3 can be explained as a non-symmetric degeneration
of the natural auto-BT for the equation in v. However the remaining three entries, which
have been uncovered by a (non-exhaustive) computer algebra search, do not appear to fit this
explanation.

To conclude this section we give two more BTs. These connect multidimensionally
consistent lattice equations which lie outside the list (2). Consider first the system (with
two-component lattice parameters)

(u + p1)v = (̃u + p2)̃v,

(u + q1)v = (̂u + q2)̂v.
(10)

5
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This constitutes a BT between the pair of lattice equations

(u + q1)(̃u + p2)(̂u + p1)(̂̃u + q2) = (u + p1)(̂u + q2)(̃u + q1)(̂̃u + p2), (11)
(p1 − q1)v + (p2 − q2 )̂̃v = (p2 − q1)̃v + (p1 − q2)̂v. (12)

Equation (11) was given originally by Hietarinta in [5] and subsequently shown to be
linearizable by Ramani et al in [12]. The BT (10) provides an alternative linearization
by connecting it with equation (12).

The other example is a BT between equations of rank-two (i.e., two-component systems)
and is therefore outside the list given by ABS [3] where only scalar equations are considered.
It is defined by the system (with scalar lattice parameters)

(v1 − ṽ1)u2ũ2 = pu1, (v2 − ṽ2)u1ũ1 = pũ2,

(v1 − v̂1)u2û2 = qu1, (v2 − v̂2)u1û1 = qû2,
(13)

and connects the equations

p(u2ũ2û1 − u1û2̂̃u2) = q(u2û2ũ1 − u1ũ2̂̃u2),

p(u1ũ1̂̃u2 − ũ2û1̂̃u1) = q(u1û1̂̃u2 − û2ũ1̂̃u1),
(14)

and

p3(v1 − v̂1)(̃v1 − ̂̃v1)(̃v2 − ̂̃v2) = q3(v1 − ṽ1)(̂v1 − ̂̃v1)(̂v2 − ̂̃v2),

p3(v2 − v̂2)(̃v2 − ̂̃v2)(v1 − v̂1) = q3(v2 − ṽ2)(̂v2 − ̂̃v2)(v1 − ṽ1).
(15)

Equation (14) is the lattice modified Boussinesq equation given originally as a second-
order scalar equation in [15]; the rank-two version (14) is attributable to Nijhoff in [13].
Equation (15) is a rank-two version of the lattice Schwarzian Boussinesq equation which was
given originally as a second-order scalar equation in [14] (a second-order scalar equation can
be recovered from (14) or (15) by elimination of one of the variables from the two-component
system, by second order here we mean a lattice equation on a square nine point stencil).

The BT (13) naturally generalizes a scalar BT given in [16] which connects the lattice
modified and Schwarzian Korteweg–de Vries equations. (Note, when transformed to a BT
between equations from the list (2) the BT given in [16] becomes non-autonomous, a type of
BT not considered in the present paper.)

5. Discussion

In the preceding sections we have given systems of equations which may be written generically
in the form

fp(u, ũ, v, ṽ) = 0,

fq(u, û, v, v̂) = 0,
(16)

and that constitute a BT between a lattice equation in u = u(n,m) and a possibly different
lattice equation in v = v(n,m), say

Qpq(u, ũ, û,̂̃u) = 0, (17)

Q∗
pq(v, ṽ, v̂,̂̃v) = 0. (18)

(Here we suppose that u and v are scalar fields and f,Q and Q∗ are polynomials of degree 1 in
which the coefficients are functions of the lattice parameters.) In this generic (scalar) case it
can be deduced (by considering an initial value problem on the cube) that the multidimensional
consistency of (17) implies the multidimensional consistency of (18). Furthermore, when (17)

6
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and (18) are multidimensionally consistent, the BT (16) commutes with the natural auto-BTs
for these equations, the superposition principle being the equation

fr(u, u, v, v) = 0. (19)

Here u and u are solutions of (17) related by its natural auto-BT (with Bäcklund parameter
r), similarly v and v are solutions of (18) related by its natural auto-BT (also with Bäcklund
parameter r), and finally, u and u are related to v and v respectively by the BT (16).

We remark that lattice equations which are connected by a BT are not always
multidimensionally consistent. Consider the following example (which involves 2-component
lattice parameters),

p1ũu = v + ṽ + p2,

q1ûu = v + v̂ + q2.
(20)

This system constitutes a BT between the equations

p1(ũu + û̃̂u) − q1(ûu + ũ̃̂u) = 2(p2 − q2),

p2
1(v + v̂)(̃v + ̂̃v) − q2

1 (v + ṽ)(̂v + ̂̃v) = p2
2q

2
1 − q2

2p2
1.

(21)

Equations (21) are multidimensionally consistent if and only if the components of the lattice
parameters are connected by the relations

a + bp2
1 + cp2 = 0, a + bq2

1 + cq2 = 0, (22)

for some constants a, b and c not all equal to zero. (The solution of (22) yields the fifth
and eighth entries in table 3.) On the other hand, when Q∗ = Q in the above, so that (17)
admits the auto-BT (16), we have found no counter-examples to the conjecture that (17) is
multidimensionally consistent.

6. Concluding remarks

The Bäcklund transformations (BTs) given in this paper establish new relationships between
equations within the classification of Adler, Bobenko and Suris (ABS) [3]. Alternative auto-
BTs turn out to establish a kind of duality between some pairs of equations. Transformations
connecting other pairs of equations are of practical significance, for example allowing for
soliton solutions to be found for one equation from those of the other (cf [17]).

New BTs have also been established for integrable lattice equations which lie outside the
classification of ABS. In particular we give a BT between systems of rank-two where only a
few examples of multidimensionally consistent equations are known.
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